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Over-Determined Source Separation and Localization
Using Distributed Microphones

Lin Wang, Joshua D. Reiss, and Andrea Cavallaro

Abstract—We propose an overdetermined source separation and
localization method for a set of M microphones distributed around
an unknown number, N < M, of sources. We reformulate the
overdetermined acoustic mixing procedure with a new determined
mixing model and apply a determined M X M independent com-
ponent analysis (ICA) in each frequency bin directly. The refor-
mulated ICA operates without knowing /N and also leads to better
separation in reverberant scenarios. To solve the challenging per-
mutation ambiguity problem, we first employ a time activity-based
clustering approach to cluster the separated frequency compo-
nents into M channels. We then propose a remixing procedure to
detect and merge channels from the same source. The detection is
done by analyzing time and frequency activities, spectral likeliness,
and spatial location. To estimate the spatial location, we propose a
time—frequency masking-based steered response power algorithm.
Simulated and real-data experiments in a very challenging rever-
berant scenario confirm the effectiveness of the proposed method
in obtaining the number of sources, the separated signals, and the
location and spatial likelihood of each source.

Index Terms—Blind source separation, over-determined mix-
ture, permutation alignment, source localization.

1. INTRODUCTION

OUND source localization and separation are fundamental
S tasks for acoustic scene analysis [1]. Source localization
enables visualizing sound directions, while source separation
assists auditory information processing, such as speech commu-
nication and recognition, by extracting the constituent sources
from the mixture signals received by the microphones. Blind
source separation (BSS) is a well-known technique that can
implement these two tasks simultaneously. A widely used ap-
proach to BSS is independent component analysis (ICA) which
estimates a demixing network that recovers the unknown sources
from the observed mixture [2]. The demixing network can be
interpreted as an inverse of the acoustic mixing network and
thus can be used to estimate the source locations if the mi-
crophone locations are known [3]. With the increasing flexi-
bility in sensor placement, BSS has been investigated inten-
sively in recent decades [4]. Although significant progress has
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been achieved, several challenges related to BSS still remain,
including the uncertainty about the number of sound sources,
performance degradation in reverberant environments, and
acoustical changes due to sound source movement [5].

The BSS problem can be classified as determined (DBSS),
under-determined (UBSS) and over-determined (OBSS), corre-
sponding to the number of microphones being equal to, larger
than and smaller than the number of sources, respectively [2].
In the most commonly encountered DBSS problem, ICA re-
quires an equal number of sources and microphones to make
the mixing network invertible [6]. When the microphones out-
number the sources, subspace-based dimensionality reduction
pre-processing is usually applied to get a determined mix-
ture [6]. When the sources outnumber the microphones, the
mixing network becomes non-invertible, and nonlinear filtering
techniques, such as time-frequency masking, are used instead of
ICA [7], [8]. Thus, a prior knowledge of the number of sources
is crucial for choosing appropriate BSS algorithms. The per-
formance of BSS degrades significantly in highly reverberant
environments, where the acoustic filters are typically very long,
thus making the mixing system difficult to invert [9]. Moreover,
ICA usually requires the mixing network to remain static for a
relatively long period to provide a reasonable estimate of a long
demixing filter. This assumption is difficult to fulfil in realistic
scenarios where human speakers may turn their heads or move
around [10].

Among the various approaches, OBSS has been relatively
overlooked compared to DBSS and UBSS, which have attracted
the majority of research attention [2], [4]. DBSS and UBSS
find wider applicabilities in portable recording devices, where
only a limited number of microphones are available. However,
due to the small array sizes, most DBSS and UBSS algorithms
have limited performance in complex acoustic environments,
e.g., with many speakers distributed over a large area. In re-
cent years, distributed microphone networks have become pop-
ular [11], [12] as many portable devices, such as smartphones,
cameras and laptops, are equipped with wireless communica-
tion modules and audio interfaces (e.g., in the case of many
people recording the same event with hand-held devices). Uti-
lizing the information from all microphones may lead to better
source separation and localization performance. OBSS becomes
a common problem in such a network, where the microphones
usually outnumber the sources. How to efficiently exploit the
redundant information from distributed microphones to tackle
the source separation problem, especially in complex acoustic
environments, is an important topic.

In this paper we propose an over-determined source sep-
aration and localization system for a set of M microphones
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distributed around an unknown number, N < M, of sources.
When using distributed arrays, several research questions arise,
such as microphone self-localization [13], [14], asynchronous
recording alignment [15], and sampling rate mismatch compen-
sation [16]. The focus in this work is the computation of the
spatial filter to separate and localize the sources, hence we as-
sume all the microphones are synchronized and their locations
are known. The proposed method employs a frequency-domain
BSS framework, where the sources are separated with ICA in
each frequency bin and then permutation aligned. By exploit-
ing a sufficient number of microphones, the proposed method
can address the challenges of source number uncertainty and
reverberation. The novelties are summarized as below.

1) We formulate the original M x N mixture as a new M x
M mixing model, which allows us to apply an M x M ICA
directly in each frequency bin without knowing N. The new
model considers environmental reverberation and leads to better
separation performance in reverberant scenarios.

2) A fundamental problem with frequency-domain BSS is the
unknown and random order of the ICA outputs at each frequency
bin, which collapses signal reconstruction in the time domain.
Traditional permutation alignment approaches only consider the
case with a determined ICA where each source occupies only
one output channel. For our case with M > N and /N unknown,
the employed M x M ICA results in more ambiguities: each
source may randomly occupy an unknown number of output
channels. This is a new permutation problem, consisting of both
inter-source and intra-source ambiguities. We first solve inter-
source ambiguities by clustering separated components with
similar time activities into the same channel. We then address
the residual intra-source ambiguities with a remixing procedure,
which detects and merges channels from the same source. The
detection is done by defining and analyzing four measures: time
and frequency activities, spectral likeliness and spatial location.
The remixing procedure can also estimate the number and loca-
tions of the sources.

3) To estimate the spatial location of each clustered channel,
which will be used in the remixing procedure, we propose a
time-frequency (T-F) masking-based steered response power
(SRP) approach. With the T-F masks that enhance target sources,
SRP outperforms traditional approaches based on ICA demixing
matrices.

Fig. 1 depicts the block diagram of the proposed method,
which consists of three main blocks: BSS, source localization
and remixing, which are presented in Sections IV, V and VI,
respectively.

1I. BACKGROUND
A. Steered Response Power for Source Localization

SRP is a steered-beamforming based algorithm which is suit-
able for source localization with distributed microphones [17],
[18]. This approach steers the beamformer over a predefined set
of spatial points and searches for peaks in the SRP (the output
signal). The simplest (delay-and-sum) beamformer computes
the propagation delays from the source position to each micro-
phone and compensates for these delays in order to coherently
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Fig. 1. Block diagram of the proposed over-determined source separation and

localization method.

sum the signals arising from the source position. More sophis-
ticated beamformers filter the microphone signals in addition
to delaying them [19]. The SRP can be interpreted as a spatial
likelihood (SL) map [20] whose peaks correspond to the loca-
tions of the sources. SRP is robust to noise and can localize
the source reliably in a single-source scenario. However, when
multiple sources are present, the peaks may not provide reli-
able information for all sources, especially when they overlap
in time [21], [22]. Multi-path propagation due to reverberation
causes additional peaks, which also degrade the localization
performance. Another drawback is the high computational cost,
which increases with the number of microphones and also with
the size of the search area. Some fast searching schemes have
been proposed [23], [24].

SRP-PHAT, a phase transformed version of SRP, is another
popular approach for multi-microphone source localiza-
tion [17], [25], [26]. Instead of using steered beamformers, SRP-
PHAT calculates the SL map by summing the phase-transformed
generalized cross-correlations for all possible pairs of the set of
microphones. The phase-transform may increase the robustness
to reverberation [27]; however, the pair-wise evaluation of the
SRP makes the computational cost increase exponentially with
the number of microphones. This could be a bottleneck when us-
ing SRP-PHAT with a large number of microphones. Both SRP
and SRP-PHAT can be seen as phase-based approaches since
they rely on delaying the microphone signals appropriately, a
procedure which is equivalent to modifying signal phase in the
frequency domain.

B. ICA and Permutation Alignment

In the context of BSS, ICA is a well-known tool for the
separation of linear and instantaneous mixed signals captured
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by multiple sensors [6]. ICA adaptively estimates a demixing
matrix by maximizing the statistical independence of the out-
put signals. Based on the definition of independence measure,
various ICA algorithms have been proposed, including joint
approximate diagonalization of eigenmatrices (JADE) [28], In-
fomax [29] and fixed-point FastICA [6]. ICA usually relies on
two prerequisites: the independence between source signals and
the invertibility of the mixing matrix. The former condition is
satisfied with most audio signals such as speech and music.
The latter condition typically requires the mixing matrix to be
square, i.e., a mixture with an equal number of sources and
observations.

For many real-world problems, the signals undergo a convo-
lutive mixing due to reverberation. Various attempts have been
made to solve the convolutive BSS problem [30], including
frequency-domain approaches [2]. By transforming the mix-
ture to the frequency domain with the short-time Fourier trans-
form (STFT), convolution in the time domain translates to lin-
ear mixing in the frequency domain. Subsequently, ICA can
be performed on each frequency bin. However, since ICA is
indeterminate of source permutation, further post-processing
methods are necessary to align the permutations in each
frequency bin.

Most permutation alignment algorithms were proposed under
the framework of DBSS, where only inter-source ambiguities
occur. Three strategies exist to tackle the permutation ambi-
guity problem. The inter-frequency dependency-based strategy
exploits the time structure of separated signal amplitudes or
speech activities [33]. This time structure shows high corre-
lation between neighboring bins for the same source. Various
approaches, including clustering-based and region-wise permu-
tation alignment schemes, exploit such inter-frequency depen-
dency [8], [31]-[33]. The location-based strategy exploits the
spatial information since contributions from the same source
are likely to come from the same direction [34]-[37]. This ap-
proach typically works well only in low-reverberant scenarios
and may suffer from spatial aliasing ambiguities if the micro-
phones are far apart [38], [42]. The joint optimization strategy,
e.g., independent vector analysis, directly incorporates the inter-
frequency dependency measure into ICA so that the permuta-
tion ambiguity can be minimized by joint optimization across
all the frequency bins [39], [40]. However, this approach may
get easily stuck in local optima by simultaneously optimizing
many parameters across the whole frequency band. Among the
three strategies, the inter-frequency dependency-based approach
performs most robustly in reverberant scenarios, especially for
speech signals [33]. Relying only on signal amplitudes, this ap-
proach works independently of the microphone placement and
is robust to spatial aliasing problems.

Since the demixing matrix obtained by ICA can be interpreted
as an inverse of the mixing matrix, several ICA-based source
localization approaches have been proposed [3], [41]-[43]. By
blindly identifying the acoustic transfer functions for each sep-
arated source, these approaches are suitable for multi-source
environments. However, since ICA is performed individually in
each frequency bin, ICA-based localization relies on success-
fully addressing the permutation ambiguity problem.
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TABLE I
COMPARISON OF OVER-DETERMINED BLIND SOURCE
SEPARATION ALGORITHMS

Strategy Approach Prior Knowledge Reference
G R N
dimensionality reduction subspace no no yes [441-[49]
fixed beamforming ~ yes  yes  yes [91, [50]
subset selection geometry-based yes no yes [51]
separation-based no no yes [52], [53]
separation and remixing yes no no proposed

(G': Microphone location; R: Source location; N : Number of sources).

C. Over-Determined BSS

Table I summarizes the state-of-the-art of OBSS algorithms,
which exploit the redundant information available when us-
ing more sensors than sources. The dimensionality reduction
strategy applies dimensionality reduction before separation so
that the numbers of input observations and sources become
equal. Two approaches have been proposed for dimensional-
ity reduction. The first approach employs subspace-based pre-
processing, e.g., principle component analysis (PCA), to extract
an equal number of components, and subsequently performs
ICA [44]-[49]. After PCA, the signal-to-noise ratio in the re-
tained components is generally higher than in any individual
sensor and the mixing matrix is usually better conditioned. As-
suming the spatial location of each source to be known, the sec-
ond approach applies a set of fixed beamformers, each pointing
at one source, before separation [9], [S0]. The fixed beamformer
can reduce noise and reverberation for each source, making the
subsequent separation task easier. The subset selection strategy
selects a subset of microphones from the whole microphone
set. The selection can be done based on geometric information,
e.g., using wide microphone spacing for doing separation at
low frequencies and narrow spacing at higher frequencies [51].
The selection can also be done by trying possible microphone
subsets and choosing the one with the best outputs [52], [53].

All the OBSS algorithms discussed above are based on DBSS
and require prior knowledge of the number of sources, and some
also require to know the locations of the sources. In contrast,
our proposed method does not need to know either the number
of sources or their locations.

III. PROBLEM FORMULATION

Consider M microphones and N sources, with M > N,
randomly distributed in a reverberant acoustic scenario. Mi-
crophones and sources are physically static. The M mi-
crophones are synchronously sampled and their locations
G =1g9,,-.-,9]3xm are known. The number of sources
N and their locations R = [ry,...,7y]3xny are both un-
known. The signals received at the microphones, x(n) =
[#1(n), ..., 2 (n)]T, are expressed as

Ly—1

x(n) = H(n) * s(n) = Z H(n)s(n—n"), (1)

n'=0
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where n is the time index, s(n) = [s;(n),..., sy (n)]T is the
source signal vector, H (n) is a sequence of M x N matrices
containing the impulse responses of mixing channels, L is
the length of the impulse response, the operator ‘x’ denotes
the convolution between two sequences of matrices, and the
superscript (-)T denotes transpose.

The task is to estimate the number of sources N, the source
locations R, and individual sources s(n), given the microphone
recordings @(n) and microphone locations G.

IV. M x M DETERMINED SOURCE SEPARATION

In this section we show that, by reformulating the M x N
over-determined acoustic mixing with a new M x M deter-
mined model, it is possible to apply an M x M source sepa-
ration directly, which leads to better separation in reverberant
scenarios than an NV x N separation.

A. M x M ICA

Using STFT, the time-domain convolution (1) is converted to
instantaneous mixing in the frequency domain:

X (k,1) = H(k)S(k,1), 2)

where k£ and [ are frequency and frame indices, respectively;
H )/ y (k) is the Fourier transform of H (n); X 5«1 (k, ) and
Snx1(k,1) are the STFTs of «(n) and s(n), respectively. Usu-
ally, a subspace-based dimensionality reduction procedure [49]
is performed in each frequency bin so that an N x N ICA can
be applied to separate the N sources.

In (1), the sound of the jth source received by the ¢th mi-
crophone, x;;(n), equals the convolution result between the
original source s;(n) and the impulse response h;;(n). Based
on the image-source theory [59], x;;(n) can also be approxi-
mated as a sum of contributions from multiple image sounds
emitting from different spatial locations:

R

zij(n) = hij(n) xs;(n) = Z hijr(n) %550 (n),  (3)

r=1
where s; is decomposed into R; image sounds: s;1,. .., SR,
and h; jr(n) denotes the impulse response between the image

sound §;, and the microphone . Usually, h; ;. (n) is shorter than
hi;(n). The STFT counterpart of (3) can be written as

Xij (k>l) = Hij (k)SJ (kvl) ~ Ij[ijr(k)gjr (k7 l)a 4)

where X;;, S;, Sj,,,, H;; and lflij,. are the STFTs of x;;, s; and
5jr, hij and h;;,, respectively.

With the new model (4), the original M x N over-determined
mixing system can be approximated as an M x M determined
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mixing system:

X (k1) ~ H(k)S(k,1)

[ Sy (k,l) ]
Fllll(k) HLNRN (k’) 51131 (k,l)
= : : : )
HMll(k) I:IMNRN (k) M XM gNl(kal)

where S represents M image sounds from the N sources. De-
pending on the acoustic scenario, 2; varies with the source j,
with R; > 1 and Zj\rzl R; = M. The new mixing model (5)
allows us to apply an M x M ICA directly to X (k,1). Since
the M image sounds usually originate from different spatial
locations, the square mixing matrix H is invertible.

There are two benefits of using such an M x M mixing
model. First, the mixing filter h;;.(n) is usually shorter than
the original mixing filter h;;(n), thus making the new M x M
system easier to invert than the original mixing system. Second,
the frequency-domain ICA can be interpreted as a set of null-
beamformers which extracts a target source by suppressing the
sources from other directions [55]. The M x M ICA allows
suppressing at most M — 1 interferences for each target source.
These M — 1 interferences may include the N — 1 sources and
their associated reverberant image sounds, which are difficult
to suppress with a normal N x N ICA. Thus, the separation
performance will improve when M is increased. A possible
drawback of using an M x M ICA is that the size of the mixing
matrix also grows with M, thus requiring more data to estimate
the demixing matrix.

We choose a widely used ICA algorithm, Infomax, to estimate
the demixing matrix using the iteration [29], [33]

Y (k1) = W (k)X (k1)
W (k) = W (k) + 7 (T = E{@(Y (k, )Y (k,)}) W (k)

(6)
where the superscript ()" denotes the Hermitian transpose,
7 is a step-size parameter, I is the identity matrix, ®(-)
is a nonlinear function, E{-} is the expectation operator,
and Y (k,1) = [V (k,1),- -, Yas (k,1)]T is the separated signal
vector.

The demixing matrix can recover the source signals up to
scaling and permutation ambiguities [33]:

Y (k,1) = A(k)D(k)S(k,1), @)

where D (k) is a permutation matrix and A (k) a scaling matrix
at frequency index k. In our case with M > N, each source
may occupy one or more ICA outputs. This leads to a more
challenging permutation alignment problem, where the permu-
tation ambiguities come not only from different sources (e.g.,
5’11 and 5'21) but also from the same source (e.g., 5’11 and 5'12).
This challenge is made even harder by the fact that the number
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of sources and the number of constituent image sounds of each
source are all unknown.

We propose to solve the permutation ambiguity problem in
two stages, with a clustering-based permutation alignment ap-
proach (Section IV-B) addressing inter-source ambiguities and
a remixing procedure (Section VI) addressing intra-source am-
biguities.

B. Clustering-Based Permutation Alignment

The time activity of speech signals typically shows strong de-
pendency among frequency components from the same source,
and an ability to discriminate among frequency components
from different sources. This discriminability usually increases
with the duration of the signal. This feature can be exploited
to align the permutation of the components from different fre-
quencies. Assuming the number of sources N to be known, a
clustering procedure has been proposed to cluster the separated
frequency components with similar time-activities into the same
group [8], [33], [54]. We use this approach to align the permuta-
tion of the M x M ICA outputs, directly assuming the number
of sources to be M. .

Given the demixing matrix W (k), the mixing matrix can
be estimated as A(k) = W (k) = [a;(k),...,ay (k)] with
a; (k) being an M x 1 vector describing the path from the ith
component Y; to M microphones. The time activity sequence
of )7; at frequency k is defined as [54]

a (Vi (k. )|

CHOE ’ — 5
poty O

®)

where || - || denotes the norm-2 operation. The inter- frequency
dependency between two time activity sequences vk' and v
(corresponding, respectively, to the ith separated 51gnal at fre-
quency k; and the jth separated signal at frequency ks) is mea-
sured by their correlation coefficient

(K2)

Yij (b1, ko) — pi (k)

oi(ki)o;(k2)

= E{ohob ), (k) = E{oh}, oik) =

\/ E{(v*)?} — p?(k) are the correlation, mean, and standard

deviation, respectively.

Let us represent the new permutation with respect to the orig-
inal outputsas IT = {1,..., M} — {1,..., M} with II(m) be-
ing the new order of the mth output [33]. The clustering is
implemented as an expectation maximization (EM) procedure,
which maximizes the correlation coefficient between the clus-
tered time-activity sequences and the corresponding centroids.
The iterative EM procedure is expressed as

1 K
?van, m=1,....M
Ly (10)

11, = arg max Z {p(vf&m) |7::H(m) } . Vk

9)

p(vf"17v5<2) =

where Yij (kl s kQ)

Cyp =
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where K is the number of frequency bins; ¢y, ..., ¢y denote
the estimated centroids; and II;, is the permutation at frequency
k. Accordingly, the demixing matrix is permutated as

W (k) & W (k). (11)

We address the scaling ambiguity problem, i.e., the unknown
scale of the ICA outputs, by minimal distortion principle-based
back projection [56]:

—~ 1 —
W (k) = diag (W (k)) W k), (12)
where (-)~! denotes the inversion of a matrix and diag(-) retains

only the diagonal components of a matrix.
Finally, we compute the separated signal as

Y (k1) = W(k)X(k,1), (13)
with  Y(k0) = [Yi(k,D),.. ., Y (kDT and  y(n) =
[y1(n),...,yn (n)]" being the inverse STFT of Y (k,1).

We refer to y(n) as the DBSS output.

C. Discussion

Clustering based on time activity sequences has been suc-
cessfully applied to permutation alignment with M = N [8],
[33]. However, in cases with unknown N and M > N, a new
challenge arises: the clustering algorithm produces more (M)
clusters than (V) sources. In addition, it is observed that the time
activity of a speech signal may vary slightly across frequencies,
e.g., between high and low frequencies [33]. This leads to two
types of clustering results. On the one hand, the clustering al-
gorithm tends to allocate components from different sources to
different clusters, thus solving the inter-source ambiguity prob-
lem. On the other hand, with M > N, the clustering algorithm
tends to allocate components (with slightly different time activ-
ities) from the same source to different clusters. Consequently,
the obtained M clusters can be virtually divided into NV source
sets. Each set may consist of several clusters which all corre-
spond to the same source. The number of sets and the association
between clusters and source sets are unknown. Therefore, the
intra-source ambiguity problem still remains unsolved.

We illustrate the intermediate processing results of the
determined M x M source separation with a realistic acoustic
scenario shown in Fig. 2. This scenario is included in an existing
dataset [26]. In a room of size 8 mx6 mx 3 m and with reverber-
ation time 79 = 0.45 s, 10 speakers, dividing into three groups,
are chatting simultaneously. The speeches of the ten speakers
are recorded by 171 distributed microphones and also by ten
close-talk microphones attached to the speakers. The database
provides a 120 s long real recording as well as the locations of
all microphones and speakers. For convenience of comparison,
we generate the same scenario using the closely recorded speech
from each speaker and simulated room impulse responses
by the image-source method [59]. We randomly choose 20
microphones (Fig. 2, M = 20 and N = 10) with signal length
25 s and sampling rate 8 kHz. We use signal-to-interference
ratio (SIR), as defined in (36), to measure the source separation
performance.
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Fig. 2. Configuration of the acoustic scenario. Ten speakers are divided into

three groups. An arrow denotes the orientation of the face of each speaker.
An example of randomly selected M/ = 20 microphones is indicated with red
circles.

The considered acoustic scenario is very challenging since
the input SIRs of the sources at microphones can be as low as
—15 dB (Fig. 11). After DBSS, the SIR of each output is shown
in Fig. 3(a), where each column of the map represents the SIRs
of each source in all the outputs, while each row represents
the SIRs of all the sources in each output. The row-wise SIRs
show that in each DBSS output only one source is dominant.
This indicates that ICA performs well for separation in each
frequency bin and the inter-source ambiguities are well solved
by the clustering-based permutation alignment. Exceptions are
y13 and yo( that are both identified as noise later. The column-
wise SIRs show that each source can be dominant in one or
several outputs. This indicates that the intra-source ambiguity
problem is still unsolved.

To better show the intra-source ambiguity problem, we depict
in Fig. 3(b) the speech activity of each DBSS output in the form
of a binary map, where the speech activity (8) is set to 1 when
it is larger than 0.5, and is set to O otherwise. In Fig. 3(b)
the title of each panel y;(s;) represents that the output y; is
associated with the source s;. This association is inferred from
Fig. 3(a), based on the highest SIR in each row. As observed in
Fig. 3(b), some sources appear only in one channel, e.g., y3 (s )
and yg (s1), whereas other sources appear in several channels.
These channels can be different frequency bands of a source,
e.g., Y14 (s2) and y17(s2). These channels can also be different
image sounds of a source, e.g., y5(s4) represents a reverberant
version of s, while yo(s4) and y;1(s4) constitute the full-band
direct sound of s4. Some channels contain noise only and present
no speech activity, e.g., y13 and ys.

The above observations provide valuable information to de-
sign the remixing algorithm (Section VI), which aims to find
the association between the sources and DBSS outputs.

V. T-F MASKING BASED LOCALIZATION

In this section, we estimate the spatial locations of the
DBSS outputs, which will be used in the subsequent remix-
ing procedure. Existing approaches perform localization based

DBSS output (y) index

SIR [dB]

1 2 3 4 5
Source (s) index

7 8

10

-10
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Fig. 3. Source separation results by the DBSS algorithm. (a) SIR of each
source in each DBSS output. In each row only one source is dominant. In each
column one source may dominate several output channels. (b) Binary map of
speech activity of each DBSS output. The title of each panel, y; (s; ), represents
the association between y; and s;.

on the acoustic transfer functions of each separated compo-
nent, namely steering vectors, estimated from the ICA demix-
ing matrix [42], [43]. These approaches typically rely on a high
direct-to-reverberant ratio in the microphone signals so that the
phase of the steering vector varies approximately linearly with
frequency. Moreover, the intra-source ambiguity may randomly
distribute the frequency bin-wise steering vectors of a single
source to different channels, degrading the localization perfor-
mance significantly.

SRP is a steered-beamforming based multi-microphone local-
ization algorithm, which is robust to noise but has degraded per-
formance in reverberant and multi-source scenarios. Combining
source separation and SRP, we propose a new time-frequency
(T-F) masking-based SRP algorithm for source localization.

For each DBSS output y,,, a T-F mask is estimated which
indicates the dominance of y,,, in each T-F bin in the microphone
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signal. After applying this T-F mask to all microphone signals,
an SRP algorithm is employed to estimate the location of y,,, .
There are three benefits when using this T-F mask. First, the
T-F mask can effectively improve the SIR of the target source
by suppressing interferences. Second, applying a T-F mask will
not change the phase information embedded in the microphone
signals. This allows us to apply the phase-based SRP algorithm
for localization. Finally, by directly working on the microphone
signals, this approach is robust to intra-source ambiguities. The
algorithm is summarized below, using v, as an example.
The (k, I)th element of the T-F mask B,,, is estimated as

1, Apm(k,0) >05

. (14)
0, otherwise

B (k1) = {
__[Yu (k)]
where A (k1) = S0y

Y. (k, 1) among all the outputs Y; (k,1),..., Y (k,1). Apply-
ing B,, to the M microphone signals, the masked signal at the
ith microphone is

Uni(k,l) = By, (k, 1) X; (k, 1),

indicates the proportion of

i=1,...,M. (15

Applying the inverse STFT to U,,;(k,l), we obtain the time-
domain signal w,,;(n).

The location of y,, is estimated by applying the SRP algo-
rithm to the M masked signals w,,1(n), ..., una (n) in the
time-domain. Here we use the simplest delay-and-sum beam-
former for the SRP algorithm. The algorithm calculates an SRP
map in a pre-defined spatial space R, where the SRP for a can-
didate position € R is defined as

L
SRP,, (r) = Y iy, (n) (16)

n=1
where L, is the signal length in samples, w,,(n)=
SM Ui(n —7;(r)), with 7,(r) being the delay of the ith
channel with respect to the first channel for the location 7. The
location of v, is estimated by detecting the highest peak in the
map, i.e.,

7., = arg max SRP,, (7). (17)
reR
We also calculate the SL map, which indicates the confidence
that y,,, originates from a certain location. After removing a floor
value with SRP,, (1) = SRP,, (1) — SRPgor, the SL is defined
as

_ > ren SRP, (1)
2rer SRPy ()

where the floor SRPy,,, is the mean SRP value in the space
R, and N denotes a predefined neighbourhood surrounding 7.
Accordingly, the SL of ,, is defined as

Pm = SLm (;i'm )

Spatial aliasing may occur at frequencies where the cor-
responding sound wavelength is shorter than twice the
inter-microphone distance. Spatial aliasing introduces phase
ambiguities, which lead to ghost locations when localizing a

SL,, (r) (18)

19)
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Fig.4. Spatial likelihood map for each DBSS output. In the title of each panel
i (s;) denotes the association between 7; and s;, whereas p denotes the SL
of the estimated location. The true and estimated locations are indicated with
white stars and white circles, respectively.

sound source [57]. The aliasing is usually severe at high frequen-
cies and less pronounced at lower frequencies. After clustering-
based permutation alignment, each DBSS output contains the
broadband signal of a single source. Source localization with
a broadband signal increases the robustness to spatial aliasing,
i.e., a true location will present a higher SL than the spurious
locations. In some exceptional cases when the DBSS output
only contains the high-frequency band of the source signal,
spatial aliasing can still be observed with ghost locations, thus
degrading the localization performance. This problem will be
addressed in the remixing stage by merging different frequency
bands of the same source together.

As an example, Fig. 4 depicts the SL map, the estimated and
true locations of each DBSS output obtained in Section IV-C.
As observed in Fig. 4, the SL can provide information regard-
ing estimation accuracy. A high SL (e.g., p > 0.2) is usually
associated with an evident peak in the SL map and correct lo-
calization, e.g., y2(s7) and y7(s3). A low SL (e.g., p < 0.05)
is usually associated with multiple peaks in the SL map, lead-
ing to inaccurate or even wrong localization, e.g., y4(s3) and
Y6 (s4). However, it may happen that a low SL is associated
with a correct localization, e.g., ys(s1). In addition, y;3 and y9
contain only noise with p = 0. The two channels y12(s10) and
y17(s2) contain signals only in the high-frequency band. The
wrong localization at these two channels is possibly caused by
the ghost locations that are introduced by the spatial aliasing at
high frequencies.
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VI. REMIXING

The intra-source ambiguity problem is dealt with using a
remixing procedure, which merges any two DBSS output chan-
nels if they are detected to be from the same source. As shown
in Fig. 3(b), the relationship between two channels can be clas-
sified into three types as below.

1) Inter: from different sources. Two channels have dif-

ferent activities along time and frequency.

2) Intra-B: from different frequency bands of the same
source. Two channels have similar activities along time
but different activities along frequency.

3) Intra-I: from different sound images of the same
source. Two channels are both full-band signals but rep-
resent different image sounds of a source, e.g., direct and
reverberant sounds. The two channels may have differ-
ent time activities, as measured by the dominance in each
time-frequency bin. However, the direct and reverberant
sounds have similar spectral contents.

In addition to spectral information, all channels from the same
source are supposed to come from the same spatial location.
However, as shown in Fig. 4, the estimated location may deviate
from the true value if the channel contains a reverberant sound.

Based on the above analysis, we define time and frequency
activity measures to detect channels from different frequency
bands of the same source, and define a spectral likeliness mea-
sure to detect channels containing direct and reverberant image
sounds of the same source. For channels from the same source
but not detected by the above spectral measures, we further as
complement define a spatial distance measure.

A. Remixing Measures

1) Speech Activity: The time- and frequency-activity se-
quences of y,,, are calculated from the T-F mask B,, as

L
Z m (k1) (20)

where K and L denote the numbers of frequency bins and time
frames, respectively. The time-activity correlation coefficient
between two channels y,,,, and y,,, is defined as

K

A (Z) - Z m (k l m

k=1

S, (D, ()
NS >2¢zle<am<m

Similarly, the frequency-activity correlation coefficient between
Ym, and y,,, is defined as

R mlamQ

2y

St b, (B) b, (k)
\/Zk —1 rn 1 \/Z m 2

A high value of R,(mq,my) indicates that y,,,, and y,,, tend
to have similar time activities. A low value of R; indicates that
the two signals tend to have different frequency activities and
thus occupy different frequency bands.

- (22)

R ml,mg
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Combining both time and frequency activities, we define a
global speech activity correlation coefficient measure

Ry (mi,me) = Ro(mi,me) — Ry(mi,ma).  (23)

Two channels y,,, and y,,, are detected to be from the same

source (Intra-B) if this measure satisfies
Ra,b(ml B mZ) > IIIM (24)

where T}, is a predefined threshold.

2) Spectral Likeliness: For two channels Y, (k,l) and
Y., (k,1) in the time-frequency domain, the likeliness of their
spectral magnitudes is defined as

Rs(mlamZ) =
3 Y, (e, )Y, (B, D)

¢ZHZI Yo, (B DS SE Y (R D2
(25)

A high R, (my,m2) indicates that y,,, and y,,, tend to have
similar spectral contents. Thus, y,,, and y,,, are detected to
be from the same source (Intra-T) if their spectral likeliness
satisfies

Rs (ml } mZ) > T9 (26)
where T is a predefined threshold.
3) Spatial Location: The spatial distance between v,,,, and
Ym, 18 defined as
D(my,ma) = [|Tm, — T, || (27

where the locations 7,,, and 7,,, are estimated with (17). The
two channels are regarded as originated from the same source if
their spatial distance is sufficiently small, i.e.,

D(ml,mg) <Ty (28)

where T} is a predefined threshold.
4) Outlier Measure: A channel y,, is detected to be uncor-
related or diffuse noise if its SL p,), is sufficiently small, i.e.,

Pm <T, (29)

where T), is a predefined threshold.
Because of the non-Gaussianity of speech signals, y,, can be
detected as noise if its kurtosis [6] is sufficiently small, i.e.,

kurt(y,, ) < Tg (30)

where 7}, is a predefined threshold.

B. Remixing Procedure

Given the above measures, the remixing procedure consists
of five stages (Fig. 5). Each stage generates a new set of chan-
nels by either removing or merging channels inherited from its
preceding stage. The first stage removes noise outliers based on
the kurtosis measure (30). The second, third and fourth stages
merge channels based on the speech activity measure (24), the
spectral likeliness measure (26), and the distance measure (28),
respectively. The fifth stage removes the residual outliers, which
satisfy either the SL measure (29) or the kurtosis measure (30).
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Stage-1 Stage-2 Stage-3 Stage-4 Stage-5
S, S, S, S, S, S,
T
e |, | Tw |, | T |, | Ta !
H H H H Tp
Sm SM1 §M2 §M3 §M4 Sy

Fig. 5. Block diagram of the remixing procedure. M/ —M4 denote the result-
ing number of source sets in Stages 1-4.

TABLE I
PARAMETERS USED IN THE REMIXING PROCEDURE

Parameter T, T, T, Ty Ty
Value 0.4 0.5 0.03 5 0.25m

To elaborate on the remixing procedure, we denote
each newly merged channel as a source set, i.e., S, =
{(Ton #m @m2m (n), By, (k,1)) }, which contains five ele-
ments denoting the constituent channels, spatial location, SL,
sound signal and binary mask, respectively.

Before remixing, we initialize M source sets as I, =
{m}’ qm = Pm> Tm =T, Zm (n) =Ym (’I’L), and B, (k,l) =
By, (k,1), for m=1,...,M. In each stage, if mg sets
{Sm,s---,Sm, } are detected to be from the same source, we
merge them into the first set S,,,, and then remove others. The
merging procedure is performed as below:

r, =1, ul,, U---Ul,,,,

qm, = qm f‘ml - ';'ﬁm

Zm (n) = Zm, (n) + Zm, (n) + ot 2 (’/l),

Bml (k,1) = Bml (kvl)‘Bﬂw (k, O] |Bmc (k, 1),
where m = argmax,, c{m,,....mq} m represents the index of
the channel with the highest spatial likelihood, the operator ‘U’
denotes union of two sets, and ‘|” the binary ‘OR’ operator.

Finally, we obtain N source sets (Sl, S N)- We denote
the corresponding output as z(n) = [z1(n),..., z5 (n)]", the

(3D

locations 71,...,7, and the spatial likelihoods ¢i,...,qy.
The OBSS demixing matrix w? is
WO (k)= > Wu(k), m=1...,N; (32

m'el,,

O

m*

where W ,,,» denotes the m/th row of W, and the same for W
We refer to z(n) as the OBSS output.

C. Parameter Selection

The remixing procedure uses five thresholds: 15, T, Ty, T),
and T, (Table II). Among them, 7}, and 7y can be easily de-
termined. Since the kurtosis of babble noise is around 5 [58],
we choose T}, = 5 to distinguish speech from noise. With prior
knowledge of the acoustic environment, we choose the mini-
mum distance between speakers as Ty = 0.25 m.

The thresholds 7}, and 7, play important roles in the
remixing procedure since they determine whether two chan-
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Fig. 6. Distribution of the parameters in three classes: Inter, Intra-I,

Intra-B.(a) Speech activity measures R, , Ry, and R} . (b) Spectral likeliness
measure R .

nels should be merged. We examine the distribution of the pa-
rameters R,, and R, in different classes (Inter, Intra-B
and Intra-T) in order to choose optimal threshold values.
We generate 64 testing cases with the simulated dataset in
Section IV-C, including different numbers of microphones M,
signal lengths L, and realizations, where M € {10, 20, 30,40},
L, € {10,20,30,40} s, and each (M, L, ) configuration has four
realizations with the start time of source signal set as the {5,
25, 45, 65}th second in the original speech. For each pair of
DBSS output channels, we hand-labelled its classification and
calculated the speech activity measures R,, R, and R,;, and
the spectral measure R;. By repeating this procedure across all
testing cases, we obtain the distribution of these parameters in
the three classes.

Fig. 6(a) depicts the normalized histogram of R, R; and Ry,
In the first row, the time-activity measure 7, behaves differently
for Inter and Intra-B. For Inter, R, is distributed be-
tween 0 and 0.5 and tends to show small values, being close to
0. For Intra-B, R, is distributed between 0.2 and 1 and tends
to show large values, centroiding around 0.7. For Intra-T,
R, is distributed almost uniformly between 0 and 0.8. In the
second row of Fig. 6(a), the frequency-activity measure I?;, be-
haves uniquely for Intra-B, where it is distributed between
0 and 0.3 and tends to show small values, being close to 0. For
both Inter and Intra-1I, Ry is distributed almost uniformly
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between O and 1. The different behaviours of R, and R; across
three classes allow us to use them jointly, i.e., Ry, = R, — Ry,
to distinguish between Inter and Intra-B. As shown in the
third row of Fig. 6(a), R,; has clear difference in these two
classes. For Inter, R,; is distributed between —1 and 0.5
and tends to show small values, centroiding around —0.5. For
Intra-B, Ry, is distributed between O and 1 and tends to
show large values, centroiding around 0.5. For Intra-TI, R,
is distributed almost uniformly between —0.5 and 0.5.

Fig. 6(b) depicts the normalized histogram of R;. In the first
row, R, tends to show low values for both Inter and Intra-
B. A pair of channels from Intra-B occupy different fre-
quency bands of the same source and thus present low spectral
likeliness. To better show the discriminability of R, for intra-
and inter-source channels, we merge all the pairs in Intra-B
into full-band signals. We then reclassify all the channel pairs
as Inter and Intra- (B+I) and recalculate R,. The second
row of Fig. 6(b) depicts the distribution of the new R,. For
Inter, Ry is distributed between 0 and 0.5 and tends to show
small values, centroiding around 0.2. For Intra- (B+I), R
is distributed between 0 and 0.9, centroiding around 0.7. Com-
paring with the first row, R, in the second row shows clearer
difference between intra- and inter-source channels. This also
explains why we merge channels based on the speech activity
measure R,; at first (Stage-2) and then the spectral likeliness
measure R (Stage-3).

When performing channel merging in Stage-2 and Stage-3,
two types of errors may occur. The first error, namely miss de-
tection, denotes two channels which are supposed to be merged
but not detected. This error typically leads to incompletely re-
constructed source signals and also an overestimation of the
number of sources. The second error, namely false alarm, oc-
curs when two channels from different sources are erroneously
merged. This error is usually irreversible as two different sources
are mixed. We therefore give higher importance to the task of
minimizing false alarms by choosing

Ty =04, T,=0.5 (33)

as given in Table II. From Fig. 6(a), some channel pairs in
Intra-I, with R, > T,;, may be detected as Intra-B and
merged in Stage-2. This will not affect the final remixing re-
sult. However, miss detection occurs when some channel pairs
in Intra-Bhave R,, < T, (Stage-2), or when some channel
pairs in Intra- (B+I) have R; < T (Stage-3). The influ-
ence of miss detections can be reduced by using an additional
location-based measure, 7}, in Stage-4.

The threshold T}, is used to remove an outlier channel based
on the SL. We thus examine the distribution of the SL for two
classes of channels, with correct and incorrect peak locations,
respectively, in the SL maps. Fig. 7 depicts the normalized his-
tograms of the SL in all testing cases. The SL shows evident
difference between the two classes. For correct localization,
around half of the spatial likelihoods are larger than 0.2, while
the other half is distributed between 0.03 and 0.2. For incorrect
localization, around 40% of the spatial likelihoods are smaller
than 0.01, while the others are distributed mainly between
0.02 and 0.1. In order to maximize localization accuracy while
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ratio, Fryse, and total error ratio, Fioal, in each stage of the remixing procedure.
Stages 0-5 denote, respectively, input, outlier removal (T}, ), merge (1}, ), merge
(T), merge (1), and outlier removal (T}, T},).

removing outliers we choose

T, = 0.03 (34)

as given in Table II. Since T}, takes effect only in the last stage,
it does not have a large effect on the remixing.

D. Validation

To demonstrate the effectiveness of the remixing procedure
(Fig. 5) as well as the chosen thresholds (Table II), we calculate
the detection error in each stage. Let us denote the number of
wrongly merged channels in each stage as N,,, and the number
of undetected channels as N, = |M — N|, where M is the re-
sulting number of source sets in this stage, and NV, as already
defined, is the number of sources. We define the miss detection
ratio, the false alarm ratio, and the total error ratio, respectively,
as

N, Ny,
Emiss = ﬁ7 Efalse = ﬁ’ Etotal = Emiss + Efalseo (35)

Fig. 8 depicts the average error ratios for all testing cases in
each stage. With more microphones than sources, we obtain a
large Episs around 0.5 and Fiyee = 0 at the input stage. The noise
outlier removal at Stage- 1 reduces Fiy;ss without changing Fiyse.
The channel merging at Stages 2-4 reduces I significantly
but also increases Fys. Specifically, spectrum-based Stage-2
and Stage-3 only introduce minor false alarms, while location-
based Stage-4 introduces evident false alarms, mainly due to
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Fig. 9. Detection error Fio, in each stage of the remixing procedure for

(a) different number of sources and (b) different reverberation times. Stages
0-5 denote, respectively, input, outlier removal (7} ), merge (1,3 ), merge (T ),
merge (1), and outlier removal (T}, T},).

inaccurate localization in some DBSS output channels. Remov-
ing the outliers generated during channel merging, Stage-5 can
reduce both F;ss and Epe. As a result, the total error Fio
decreases monotonically across all processing stages, finally
reaching a value below 0.1. Since the merging error mainly
arises from Stage-4, the remixing performance could be im-
proved if a better localization algorithm was employed. The
observations made in Fig. 8 confirm the effectiveness of the
remixing procedure and the chosen thresholds.

We investigate the robustness of the remixing procedure in
scenarios with a varying number of sources /N and reverberation
time Rg(. In the first scenario, we use Ry =450 ms but a varying
number of sources N € {5,7, 8, 10}. Referring to Fig. 2, we only
consider the speakers from the groups G1 and G2 for N = 5;
the groups G1 and G3 for N = 7; the groups G2 and G3 for
N = 8; and all three groups for N = 10. In the second scenario,
we use N = 10 but varying Rgg € {200, 450, 700} ms. As in
Section VI-C, we generate 64 testing cases for each config-
uration. Fig. 9 depicts the total detection error FEiy, in each
remixing stage for different scenarios. In Fig. 9(a), Ei. at the
input stage decreases with NV, because the number of undetected
channels N, drops as IV is increased. It is also observed that,
for each N, Fi decreases monotonically across all process-
ing stages. The final Fiy, are all close to 0.1 for different V.
In Fig. 9(b), Eia also decreases in all processing stages for
each Rgg. The final iy, increases with the reverberation time,
being close to 0, 0.1 and 0.15 for Rgy = 200, 450 and 700 ms,
respectively. The above observations made in Fig. 9 confirm the
robustness of the remixing procedure and thresholds in various
scenarios.

Finally, we apply the remixing procedure to the example of
Section IV-C. After channel merging and outlier removal, we
obtain ten source sets, equalling the true number of sources.
The SIR of each source in each OBSS output and the locations
of sources are depicted in Fig. 10(a) and (b), respectively. As
observed in Fig. 10(a), in each row and column of the SIR map
only one source is dominant, showing that both the inter-source
and intra-source permutation ambiguities have been solved. As
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Fig. 11.  SIR of each source at microphone inputs and OBSS outputs. The
OBSS algorithm can improve the SIR of each source by about 20 dB.

shown in Fig. 10(b), the estimated locations are consistent with
the true locations. Finally, the SIR of each source in the mi-
crophones and in the OBSS outputs is shown in Fig. 11. It is
possible to notice that the OBSS algorithm can significantly
improve the SIR (about 20 dB) of each source.

VII. COMPUTATIONAL COMPLEXITY

The proposed algorithm mainly consists of three blocks:
DBSS, source localization and remixing. The source localiza-
tion block dominates the whole computation of the algorithm
and its importance grows with M. For each one of the M DBSS
outputs, an SRP algorithm is applied which exhaustively search
in the candidate space. The computational complexity of the
source localization is proportional to M2 L;. The computational
complexity of the DBSS block is typically proportional to M L, .
The computational complexity of the remixing block is domi-
nated by the spectral likeliness calculation, which is applied to
each pair of the DBSS outputs. Thus the computational com-
plexity of the remixing block is proportional to M2 L;.

We run Matlab code of the proposed algorithm on an Intel
CPU i7@3.2 GHz with 16 GB RAM, using the same simulated
data (20 s) from Section IV-C. Fig. 12 depicts the computation
time of each block for a varying number of microphones.
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VII. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm in
terms of source separation and source localization.

A. Experiment Setup

We use the same simulated dataset as in Section IV-C to
evaluate the performance of the proposed OBSS algorithm with
a varying number of microphones M and length of signal L,
where M is increased from 10 to 40 with an interval of 5 and
L, is chosen from {6, 10, 15, 20, 30, 40} s. For each (M, L,)
configuration, we implement four realizations where the start
time of the source signal is set as the {5, 25, 45, 65}th second
in the original recording.

For source separation, we compare the performance of
the proposed OBSS algorithm (Proposed) with four exist-
ing algorithms: the subspace-based noise reduction algorithm
(SS) [46], the subspace-based dimensionality reduction fol-
lowed by determined BSS (SS+BSS) [46], the fixed delay-and-
sum beamforming which assumes the locations of all sources
are known (BF) [50], and the delay-and-sum beamforming fol-
lowed by determined BSS (BF+BSS) [50].

For source localization, we first compare the accuracy of the
peak of the SL map obtained by the steering vector-based [42]
and the proposed T-F masking-based approaches. We then com-
pare the multi-source localization performance of the proposed
OBSS algorithm (Proposed) with two existing algorithms in-
cluding SRP and SRP-PHAT. To adapt these two algorithms for
multi-source localization, we localize the most dominant source
in each time segment (1 s long) and merge the results across the
whole signal duration.

The thresholds used in Proposed are listed in Table II. The
BSS and clustering-based permutation alignment algorithms are
implemented as in [33]. We choose 2048 as the STFT frame
size at sampling rate 8 kHz. With approximate knowledge of
the acoustic environment, we define the search space R in (17)
to be a box of size Smx3mx2m enclosing all the sources, and
define the neighbourhood N in (18) to be a sphere with radius
0.2 m. The search step is set as 0.1 m in all three dimensions.
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B. Performance Measures

We evaluate the source separation performance with SIR. De-
note the mixing system H (n) = [H1(n), ..., Hy(n)] and the
demixing system W (n) = [W{(n),..., W} (n)]T the SIR
of the jth source s; in the ith output y; is defined as

>ont (yi(n))?
s Sonta (Wi (n))?

where y;;(n) = W;(n) * H;(n) * sj(n). The SIR of s; among
all the outputs is defined as the maximum value:

SIR; = max{SIR;; }. (37
?

Representing the input and output SIR of s; as SIR}n and SIR;?“‘,
respectively, the global SIR improvement by W is defined as
1<
SIRimp = = > _ (SIR}™ — SIRY') .

j=1

(38)

Given SIR;;, the index of the source associated with the ith
output y; is estimated as

J; = argmax{SIR;; }. (39)
J

The SIR regarding the OBSS filter W can be calculated in a

similar way.

To evaluate the accuracy of the SL peaks calculated by dif-
ferent approaches, we define an objective measure of peak error
rate. Suppose the location of the SL peak of the DBSS output
y; is 7; (17) while the true location is r;, (39), the peak can
be seen as a correct estimation if ||#; — r, || < T,. For the M
peaks of the M DBSS outputs the peak error rate is defined as

M.

M

where M, denotes the number of incorrect peaks.
We evaluate the multi-source localization performance with

recall rate and precision rate. Let the location estimated for

the ith OBSS output z; be #; (17) and the true location be 7,

(39). The localization is regarded as correct if ||7; — 7, || < Ty.

Suppose that the true number of sources is NV, the estimated

number of sources is N , and the number of correct estimation

is V.. Then the recall rate and the precision rate are

Rpe = (40)

Ne Ne

Rreca = = Rre(;:%.
11 N P N

(41)

C. Validation on Simulated Data

We evaluate the source separation performance in terms of
SIR improvement by the considered algorithms (Proposed,
SS, SS+BSS, BF, BF+BSS) for various M and L;. For each
(M, L) configuration the SIR improvement results are averaged
across four realizations. The SIR performance of Proposed
for various M and L, is depicted in Fig. 13. The performance in-
creases with L, though the improvement slows as L; increases.
ICA typically requires enough data to estimate the demixing ma-
trix, leading to improved separation performance with increased
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Fig. 14.  SIR improvement by the considered algorithms for a varying number

of microphones (M) and length of signal (L+). In most cases, the performance
of the Proposed algorithm improves with M. For L; < 10 and M > 20 the
performance decreases with increasing M due to lack of enough data.

signal length. In most cases, the performance of Proposedim-
proves significantly as M is increased from 10 to 25. However,
when M > 25, the performance improves slowly with A/ when
L; > 15 s, and even decreases with M when L; < 15 s. This
is because the demixing matrix estimation task becomes more
challenging. The performance of ICA degrades if there are not
enough data, leading to decreased SIR in case of large M but
small L;.

Fig. 14 depicts the SIR performance of the five considered
algorithms for various M and L;. Proposed performs best
when L; > 10 s. Proposed performs similarly to BF+BSS
when L; =10 s, but performs worse than BF+BSS when
L; =6 s. The rank of the other four algorithms can be
BF+BSS>SS+BSS>BF>SS. The performance of SS and BF
is improved significantly when combined with BSS. For both
SS and SS+BSS the SIR performance remains almost constant
with respect to M and L,. For BF and BF+BSS the SIR perfor-
mance improves with increasing M but independent of L;. Note
that both BF and BF+BSS require the number and locations of
the sources to be known.
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Fig. 15.  Peak error rate (Rpe) by the T-F masking-based and steering vector-
based localization approaches.
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Fig. 16. Multi-source localization performance in terms of recall rate and
precision rate for a varying number of microphones and length of signal.

We compare the accuracy of the SL peaks obtained by the
steering vector-based and the T-F masking-based approaches.
Fig. 15 depicts the peak error rate (I2,) of the two approaches
for various M and L,. The result for each (M, L;) configuration
is obtained by averaging the four realizations. It is observed
that the masking-based approach performs slightly worse than
the steering vector-based approach when M < 20, but outper-
forms it significantly especially when M > 30. The perfor-
mance degradation of the steering vector-based approach for
large M is mainly due to the intra-source ambiguity, which
more sever with increasing M. In contrast, the masking-based
approach is not affected by intra-source ambiguities, with peak
error rate varying slightly with M. Since the performance of
the two approaches is complimentary for large and small M,
combining the two could lead to better localization results.

We compare the multi-source localization performance of the
Proposed, SRP, SRP-PHAT algorithms. Fig. 16 depicts the
recall rate (Rpecan) and precision rate (Fpec) of the three al-
gorithms for various M and L;. The result for each (M, L;)
configuration is obtained by averaging the four realizations.
In global, the performance improves when increasing L;. SRP
performs worst in terms of both Rpeca and Rprec. SRP~PHAT
performs best in terms of Rpc, which remains 1 for all test-
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SIR performance for real data using 30 microphones and 30 s data.

ing cases. However, SRP-PHAT achieves a rather low Ry,
around 0.6, 0.7 and 0.8 for L; = 10, 20 and 30 s, respectively.
SRP-PHAT detects multiple sources by merging the localiza-
tion results across multiple time segments. Increasing signal
length can increase the possibility of detecting all the sources.
Proposed performs best in terms of Ryecan. Its performance
depends on both M and L;. For L; > 20s, Ryecan of Proposed
improves when increasing M. For L; = 10 S, Ryeca Improves
when increasing M for 10 < M < 25, and then decreases when
increasing M for M > 25. The decrease of Ry, is due to de-
graded ICA performance in case of large M but small L;. The
remixing procedure of Proposed chooses the thresholds that
can minimize false alarms, and thus tends to overestimate the
number of sources. This is confirmed by the observation that,
when M > 20 and L; > 20, Ryecan of Proposed is close to 1
but Ry lies between 0.9 and 1. This drawback can be mitigated
by considering the SL: a high SL is usually associated with cor-
rect localization while a low SL leads to incorrect localization.
Combining spatial likelihoods with particle filtering [60] may
improve the precision rate.

D. Experiment With Real-Data

We use a database [26] with real recording of the scenario in
Fig. 2. The data contain environmental noise, the directivity of
the speakers and head movements. We use 30 microphones with
signal length 30 s and sampling rate 8 kHz. Since the sound of
individual speakers at the microphones is not available, we use
the BSS Evaluation Toolbox [61] to calculate the SIR, using the
close-recording of each speaker as reference. We compare five
algorithms: Proposed, SS, SS+BSS, BF, BF+BSS.

Fig. 17 depicts the SIRs of each source in the microphone
inputs and OBSS outputs. Proposed performs best in most
cases, except when all the algorithms fail to extract the source
s5. This failure is possibly due to large head movement. The
observation that the SIR of BF is even lower than the input SIR
implies that s; has already deviated from its original location.
As aresult, s; is even not extracted in the determined BSS stage
(which is not shown here) of Proposed.

Fig. 18 depicts the localization result by Proposed includ-
ing the true and estimated source locations and the SL of each

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 9, SEPTEMBER 2016

' ' | O True % Estimated | '
L z,(s;) -
1 11 %7 ;é o CS>7 S
2 (s z.(s,) (sg)
— | p=086 | p,=0.42 a0 3%4 £10 S;éss
€ ot 4 ]
= =0.69 | p,=0.26 Z;(sg)
>~ Py Pg s 5@ zgfs4) 778
p4=0.59 [ py=0.16 (s.) 25(31)
| _ S d€521 3 Bs
A L p,=0.56 | p,,=0.11 G%K 3 1
_ _ z.(s S
ps=0.51 | p,,=0.08 6'6 f(sj
pg=0.44
-2 -1 0 1 2 3 4 5
X[m]
Fig. 18.  True and estimated source locations by the proposed OBSS method

for real data, as well as the SL of each estimated source. z;(s;) denotes the
association between output z; and source s; .

estimate. It can be observed that Proposed can accurately lo-
calize seven out of ten sources. s; is not extracted in the output,
sy 18 extracted as z, and zg, and sy is extracted as z;¢ and z;.
However, these falsely detected sources usually show low spatial
likelihoods, which could be used to overcome this problem.

IX. CONCLUSION

We proposed an over-determined source separation and lo-
calization method that can estimate the number and locations of
the sources, and separate individual sources in a reverberant and
multi-source environment. The proposed method exploits the
redundant information of a sufficient number of microphones
and performs well in highly reverberant scenarios. Experiments
in a very challenging acoustic scenario show the effectiveness of
the method, which improves when the number of microphones
or the duration of the signal increases.

The separation performance tends to saturate when the num-
ber of microphones is large (cf. Fig. 13). Since the computational
cost of the proposed method grows quickly with the number of
microphones, it would be desirable to decompose the micro-
phone network into several subsets and then perform ICA on
each subset. The proposed method requires the sources to be
static for a sufficiently long time interval so that the parameters
of the demixing filter can be estimated. Extending the proposed
method to dynamic acoustic scenarios will be an interesting
future research direction. Moreover, the employed parameter
selection scheme determines the threshold values based on a
limited amount of data and thus may not work optimally in
all real-world applications. An intelligent thresholding scheme
that determines the threshold values adaptively would be more
desirable. A weighted combination of the various threshold pa-
rameters could also increase robustness. In addition, there are
some existing approaches which are able to estimate the number
of sources directly from the microphone signals [62], [63]. Com-
bining these approaches with our proposed remixing procedure
may help better address the intra-source ambiguity problem.
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